17 research outputs found

    Clustering of gene expression data: performance and similarity analysis

    Get PDF
    BACKGROUND: DNA Microarray technology is an innovative methodology in experimental molecular biology, which has produced huge amounts of valuable data in the profile of gene expression. Many clustering algorithms have been proposed to analyze gene expression data, but little guidance is available to help choose among them. The evaluation of feasible and applicable clustering algorithms is becoming an important issue in today's bioinformatics research. RESULTS: In this paper we first experimentally study three major clustering algorithms: Hierarchical Clustering (HC), Self-Organizing Map (SOM), and Self Organizing Tree Algorithm (SOTA) using Yeast Saccharomyces cerevisiae gene expression data, and compare their performance. We then introduce Cluster Diff, a new data mining tool, to conduct the similarity analysis of clusters generated by different algorithms. The performance study shows that SOTA is more efficient than SOM while HC is the least efficient. The results of similarity analysis show that when given a target cluster, the Cluster Diff can efficiently determine the closest match from a set of clusters. Therefore, it is an effective approach for evaluating different clustering algorithms. CONCLUSION: HC methods allow a visual, convenient representation of genes. However, they are neither robust nor efficient. The SOM is more robust against noise. A disadvantage of SOM is that the number of clusters has to be fixed beforehand. The SOTA combines the advantages of both hierarchical and SOM clustering. It allows a visual representation of the clusters and their structure and is not sensitive to noises. The SOTA is also more flexible than the other two clustering methods. By using our data mining tool, Cluster Diff, it is possible to analyze the similarity of clusters generated by different algorithms and thereby enable comparisons of different clustering methods

    Host Iron Binding Proteins Acting as Niche Indicators for Neisseria meningitidis

    Get PDF
    Neisseria meningitidis requires iron, and in the absence of iron alters its gene expression to increase iron acquisition and to make the best use of the iron it has. During different stages of colonization and infection available iron sources differ, particularly the host iron-binding proteins haemoglobin, transferrin, and lactoferrin. This study compared the transcriptional responses of N. meningitidis, when grown in the presence of these iron donors and ferric iron, using microarrays

    The Single-Step Method of RNA Purification Applied to Leptospira

    No full text
    Cite this protocol as:Zavala-Alvarado C., Benaroudj N. (2020) The Single-Step Method of RNA Purification Applied to Leptospira. In: Koizumi N., Picardeau M. (eds) Leptospira spp.. Methods in Molecular Biology, vol 2134. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0459-5_5International audienceEstablishing a rapid method to obtain pure and intact RNA molecules has revolutionized the field of RNA biology, enabling laboratories to routinely perform RNA analysis such as Northern blot, reverse transcriptase quantitative PCR and RNA sequencing. Here, we describe an application of the effective single-step method of RNA extraction (or guanidinium thiocyanate-phenol-chloroform extraction) applied to Leptospira species. This method is based on the powerful ability of guanidinium thiocyanate to inactivate RNases and on the different solubility of RNA and DNA in acidic phenol. This method allows one to reproducibly obtain total RNAs with high yield and integrity, as determined by capillary electrophoresis, suitable for the RNA sequencing technology
    corecore